
Strong Normalisation for System F

Thomas Waring

June 30, 2021

Contents

1 System F 1

2 Reducibility Candidates 2

3 Strong Normalisation 5

1 System F

We mostly presume familiarity with System F, or polymorphic lambda calculus: the primary
reference is Girard’s (who else’s?) [GLT93], chapter 11 (for definitions) and chapter 14 (for
normalisation).

A quick refresher. In what follows, the substitution arb{cs denotes replacing all free oc-
curences of the variable c in a with b. Also, note that terms are considered up to α-equivalence:
changing the names of bound variables. For more detail see [Sel08] chapter 8, noting slight
differences of notation.

Types are defined inductively, starting from an infinite sequence X,Y, Z, . . . of type variables,
and with three rules.

1. Type variables are types (which are free in the resulting type).

2. If U and V are types, then U Ñ V is a type.

3. If V is a type, and X is a type variable, then ΠX.V is a type. Any previously free
occurence of X in V is now bound.

From this, there are five ways to form terms.

1. Variables: an infinite sequence xT , yT , zT , . . . for each type T .

2. Application: if t and u are terms of type U Ñ V and U , then tu is a term of type V .

3. λ-abstraction: if xU is a variable of type U , and v is a term of type V then λxU .v is a
term of type U Ñ V . As before, occurences of xU in v are bound in λxU .v.

4. Universal application (or extraction): if t is a term of type ΠX.V and U is type, then tU
is a term of type V rU{Xs.

5. Universal abstraction: if v is a term of type V , then ΛX.v is a term of type ΠX.V , so
long as X is not free in the type of any free variable of v.

1



There are two “reduction” operations on terms. The first familiar is familiar (as β-reduction)
from simply typed lambda calculus:

pλxU .vqu ù vru{xs.

The second is its equivalent for universal abstraction / application:

pΛX.vqU ù vrU{Xs.

We note without proof that these reduction rules satisfy the Church-Rosser property, also
known as confluence. Loosely, if u ù u1 and u ù u2 then there is a term v and sequences of
reduction steps, starting at u1 and u2, and ending at v. See [Gal90], §10 for a proof.

Finally some terminology. For a given term u, define νpuq to be the longest sequence of
reductions starting with u. For example:

pΛX.λxX .xqV vV ù pλxV .xqvV ù vV

so νppΛX.λxX .xqV vV q “ 2 (if v is a variable, so atomic), as in each case there was a single
possible reduction (a single redex). The primary goal of these notes is to show that νpuq is finite
for every term u. This property is identified with “strongly normalising”, as by confluence if a
normal form (a reduct with no redexes) exists, it is unique.

A term is called neutral if it is of the form x, tu or tU . That is, if it does not start with an
abstraction of either type.

2 Reducibility Candidates

Definition 2.1. A reducibility candidate of type U is a set R of terms of type U , such that:

• (CR1) If t P R, then t is strongly normalising.

• (CR2) t P R and t ù t1, then t1 P R.

• (CR3) t is neutral, and whenever we convert a redex in t we obtain a term t1 P R, then
t P R also.

By (CR3), any term which is neutal and normal belongs to every reducibility candidate of
the appropriate type.

Lemma 2.2. The set SNU of strongly normalising terms of type U is a reducibility candidate.

Proof. (CR1) is tautological. If t ù t1, then νpt1q ă νptq, so t1 is also strongly normalising. If
there were an infinite path of reductions starting from t, then the t1 in the second step would
also not be strong normalising, so t1 R SNU .

Lemma 2.3. Given reducibility candidates R and S of types U and V , the set RÑ S of terms
of type U Ñ V is defined by:

t P RÑ S ðñ @upu P R ùñ tu P Sq

is a reducibility candidate.

2



Proof. (CR1) Given t P RÑ S and any u of type U , νptq ď νptuq, so t is strongly normalising
(noting that R is nonempty).

(CR2) Let some t P RÑ S be given, and t1 such that t ù t1. For any u P R, tu ù t1u, so
t1u P S (by CR2). This implies t1 P RÑ S.

(CR3) Let some u P R and neutral t as in (CR3) be given. As t does not begin with
an abstraction, the only possible one-step reductions beginning with tu are tu ù t1u and
tu ù tu1, where t ù t1 and u ù u1 are one-step reductions. By assumption, t1 P R Ñ S,
which means that t1u P S. For the other case, we induct on νpuq, which is finite. u1 P R
by (CR2), and νpu1q ă νpuq, which implies, by induction, that tu1 P S. Therefore, by (CR3)
applied to S, tu P S, and so t P RÑ S.

The following proposition lays out the key definition. Its proof can be skipped (especially
on first reading), but is included in case anyone is suspicious of it.

Proposition 2.4. Let T be a type, and suppose the sequence
¯
X “ X1, X2, . . . is assumed to

contain all free (type) variables of T . With a sequence
¯
U of types, we may define a type T r

¯
U{

¯
Xs

by simultaneous substitution. Let R̄ be a sequence of reducibility candidates, with Ri of type Ui.
Then we can define a set REDT rR̄{

¯
Xs of terms of type T r

¯
U{

¯
Xs inductively by the following.

• If T “ Xi then REDT rR̄{
¯
Xs “ Ri.

• If T “ V ÑW , then REDT rR̄{
¯
Xs “ REDV rR̄{

¯
Xs Ñ REDW rR̄{

¯
Xs.

• If T “ ΠY.W , then REDT rR̄{
¯
Xs is the set of terms t of type T r

¯
U{

¯
Xs such that, for every

type V and reducibility candidate S of this type, tV P REDW rR̄{
¯
X,S{Y s.

Proof. As we will see later, this definition is remarkably circular as REDT rR̄{
¯
Xs is itself a

reducibility candidate. As such, we make the definition extra precise. We conceive of this
definition as a function, assigning to a type T , and substitution as defined, a set of terms of
type T r

¯
U{

¯
Xs. Note that, entirely separate from this definition, we have for each type U a family

CU of reducibility candidates of this type: this is defined by comprehension on definition 2.1.
The complexity cpT q of a type T is defined in the obvious way, counting the number of Λ or Ñ
symbols.

We seek to define a function for each type T , assigning a valid substitution (one including
all free variables) to the set REDT rR̄{

¯
Xs. In excruiciating detail, let X be the set of all type

variables, and Sub the set of partial functions:

X Ñ
ž

UPU
CU

with finite domain. Then for a given type T the domain ∆pT q of our function is the subset:

∆pT q “ tη P Sub | dompηq Ą FVtypepT qu

Let Σ be the set of System F terms. To induct, we need to prove that for any n P N, if we are
given the set:

tREDT : ∆pT q Ñ PΣ | cpT q ă nu (1)

then there is a unique choice of set:

tREDT : ∆pT q Ñ PΣ | cpT q ă n` 1u

corresponding to the above definition. From this perspective, the fact that REDT rR̄{
¯
Xs is a

set of terms of a particular type has been glossed over, so this must be part of the induction.

3



By the disjoint union, each η determines an assignment X Ñ U , for each free varibale. Abusing
our notation slightly we denote T rηs “ T r

¯
U{

¯
Xs, where ηpXiq is a reducibility candidate of type

Ui.
For n “ 0, T must be a variable X, so we assign REDT rηs “ ηpXq. If ηpXq is a reducibility

candidate of type U , then REDT rηs is a set of terms of type U “ T rηs.
For n ą 0, T is either an arrow or universal abstraction. If T “ V ÑW then for any given

η we may construct the set as usual, noting that the free type variables of V and W are each
at most those of T . Also, by the inductive hypothesis, the members of REDT rηs will terms of
type:

V rηs ÑW rηs “ T rηs

Finally, suppose T “ ΠY.W . For any η : ∆pW q Ñ
š

UPU CU and reducibility candidate S of
type V , define:

pη ` S{Y qpXq “
"

S X “ Y
ηpXq else

Then we define REDT rηs to be the set of terms of type ΠY.W rηs, such that for any type V and
reducibility candidate S of that type, tV P REDW rη ` S{Y s.

This constructs REDT rηs for any T of complexity n, and η P ∆pT q, so by induction our
construction uniquely determines the sets as claimed.

Remark 2.5. Observe that the notation REDT rR̄{
¯
Xs does not explicitly include the substitu-

tions Ui{Xi, which are nonetheless necessary to choose the right Ri (see [Gal90] p.38).

Example 2.6. If T “ ΠX.X Ñ X, then (with
¯
X empty), REDT r´s is the set of terms t with

type T , such that for every type V and reducibility candidate S:

tV P REDXÑXrS{Xs “ S Ñ S.

We need a couple of facts about these sets.

Lemma 2.7. REDT rR̄{
¯
Xs is a reducibility candidate of type T r

¯
U{

¯
Xs.

Proof. By induction on T . The only case we need verify is T “ ΠY.W .
(CR1) Let some t P REDT rR̄{

¯
Xs be given. With an arbitrary type V , and arbitrary re-

ducibility candidate S, tV is strongly normalising, by inductively applying (CR1) to REDW rR̄{
¯
X,S{Y s.

As νptq ď νptV q, t is also strongly normalising.
(CR2) If t ù t1, then for any type V , tV ù t1V . Given a reducibility candidate S of this

type, by induction:
t1V P REDW rR̄{

¯
X,S{Y s

so t1 P REDT rR̄{
¯
Xs.

(CR3) Suppose that t is neutral, and every term t1 one step from t belongs to REDT rR̄{
¯
Xs.

Then for any type V , the only one-step reductions of tV are of the form t1V , as t is neutral.
Since t1 P REDT rR̄{

¯
Xs, t1V P REDW rR̄{

¯
X,S{Y s for every candidate S. By (CR3), this means

t P REDT rR̄{
¯
Xs.

Lemma 2.8. REDT rV {Y srR̄{¯
Xs “ REDT rR̄{

¯
X,REDV rR̄{

¯
Xs{Y s

Proof. Again, induction on T . First, if T is a variable, then T “ Xi or T “ Y . In the first
case, T rV {Y s “ T , and both sides are Ri by definition. In the latter case, both sides are
REDV rR̄{

¯
Xs.

4



If T “W1 ÑW2, then the left-hand side is:

REDW1rV {Y sÑW2rV {Y srR̄{¯
Xs “ REDW1rV {Y srR̄{¯

Xs Ñ REDW2rV {Y srR̄{¯
Xs

The right-hand side is

REDW1rR̄{¯
X,REDV rR̄{

¯
Xs{Y s Ñ REDW2rR̄{¯

X,REDV rR̄{
¯
Xs{Y s

By induction REDWirV {Y srR̄{¯
Xs “ REDWirR̄{¯

X,REDV rR̄{
¯
Xs{Y s, for i “ 1, 2, so the two

expressions agree.
Finally, let T “ ΠZ.W . Then T rV {Y s “ ΠZ.pW rV {Y sq, so the equality is clear by applying

the inductive hypothesis to W .

3 Strong Normalisation

We can now state the statement we will prove; general strong normalisation will pop out as a
corollary.

Theorem 3.1. Let t be any term of type T , with free variables among x1, . . . , xn, of types
U1, . . . , Un. Suppose also that the free type variables of T,U1, . . . , Un are among X1, . . . , Xm.
Let R1, . . . ,Rm be reducibility candidates of types V1, . . . , Vm, and u1, . . . , un terms of types
U1r

¯
V {

¯
Xs, . . . , Unr

¯
V {

¯
Xs, each in REDU1rR̄{¯

Xs, . . . ,REDUnrR̄{¯
Xs. Then:

tr
¯
V {

¯
Xsr

¯
u{

¯
xs P REDT rR̄{

¯
Xs

The variable and application cases are (by Girard’s standards) fairly straightfoward, and for
the other three the facts we need are the following.

Lemma 3.2 (λ-abstraction). If for every v P REDV rR̄{
¯
Xs the term wrv{ys P REDW rR̄{

¯
Xs,

then λyV .w P REDV ÑW rR̄{
¯
Xs.

Proof. We need to show that pλyV .wqv P REDW rR̄{
¯
Xs for every v P REDV rR̄{

¯
Xs. Let such a

v be given. Noting that by assumption (with v “ y), w is strongly normalising, we induct on
νpvq ` νpwq. Considering one-step reductions from pλyV .wqv, there are three cases. In each,
they belong to REDW rR̄{

¯
Xs.

• pλyV .wqv1 with v ù v1 in one step. Then νpv1q ă νpvq.

• pλyV .w1qv with w ù w1 in one step. Then νpw1q ă νpwq.

• wrv{ys P REDW rR̄{
¯
Xs by assumption.

As we are dealing with an application, (CR3) implies that pλyV .wqv P REDW rR̄{
¯
Xs, which

implies the result.

Lemma 3.3 (Universal application). If t P REDΠY.W rR̄{
¯
Xs, then tV P REDW rV {Y srR̄{¯

Xs.

Proof. By assumption, for any reducibility candidate S of type V , tV P REDW rR̄{
¯
X,S{Y s.

Taking S “ REDV rR̄{
¯
Xs and using Lemma 2.8 the result is immediate.

Lemma 3.4 (Universal abstraction). If for every type V and candidate S of that type, wrV {Y s P
REDW rR̄{

¯
X,S{Y s, then ΛY.w P REDΠY.W rR̄{

¯
Xs.

5



Proof. Given a type V and candidate S, we must show that pΛY.wqV P REDW rR̄{
¯
X,S{Y s.

This is entirely analogous to the λ-abstraction case, now we induct on νpwq. Converting a redex
in pΛY.wqV gives two cases:

• pΛY.wqV ù pΛY.w1qV , where νpw1q ă νpwq.

• pΛY.wqV ù wrV {Y s P REDW rR̄{
¯
X,S{Y s by assumption.

Applying (CR3) and the definition of REDΠY.W rR̄{
¯
Xs the result follows.

Right then, in we jump.

Proof of Theorem 3.1. We induct on the construction of t. If t is a variable, say xi, then
T r

¯
V {

¯
Xs “ Uir

¯
V {

¯
Xs, and tr

¯
V {

¯
Xsr

¯
u{

¯
xs “ ui P REDUirR̄{¯

Xs “ REDT rR̄{
¯
Xs.

If t “ vw, then both vr
¯
V {

¯
Xsr

¯
u{

¯
xs and wr

¯
V {

¯
Xsr

¯
u{

¯
xs belong to the appropriate set by

induction. By definition, this implies that:

vr
¯
V {

¯
Xsr

¯
u{

¯
xspwr

¯
V {

¯
Xsr

¯
u{

¯
xsq “ tr

¯
V {

¯
Xsr

¯
u{

¯
xs

belongs to REDT rR̄{
¯
Xs.

Let t “ λyV .w of type V ÑW . By the inductive hypothesis

wr
¯
V {

¯
Xsr

¯
u{

¯
x, v{ys P REDW rR̄{

¯
Xs

for every v of type V r
¯
V {

¯
Xs. Then by Lemma 3.2 we have that:

λyV r
¯
V {

¯
Xs.wr

¯
V {

¯
Xsr

¯
u{

¯
xs “ tr

¯
V {

¯
Xsr

¯
u{

¯
xs

belongs to our reducible set.
If t “ t1V , with t1 of type ΠY.T 1, making T “ T 1rV {Y s. By the inductive hypothesis,

t1r
¯
V {

¯
Xsr

¯
u{

¯
xs P REDΠY.T 1rR̄{

¯
Xs

Applying Lemma 3.3 implies the result.
The final case is t “ ΛY.w. Again, using the inductive hypothesis, for any type V and

reducibility candidate S of this type:

wr
¯
V {

¯
X,V {Y sr

¯
u{

¯
xs P REDW rR̄{

¯
X,S{Y s

We apply Lemma 3.4 which implies the result.

Corollary 3.5. Every term of System F is strongly normalising.

Proof. Apply the above, with Vi “ Xi and uj “ xj , making each substitution the identity. Any
sequence Ri of reducibility candidates works, for example the sets SN i of strongly normalising
terms of type Xi. Then (CR1) implies that every term is strongly normalising.

References

[Gal90] Jean Gallier. On girards candidats de reductibilite. 01 1990.

[GLT93] Jean-Yves Girard, Yves Lafont, and Paul Taylor. Proofs and types. Cambridge Univ.
Press, 1993.

[Sel08] Peter Selinger. Lecture notes on the lambda calculus. CoRR, abs/0804.3434, 2008.

6


	System F
	Reducibility Candidates
	Strong Normalisation

